

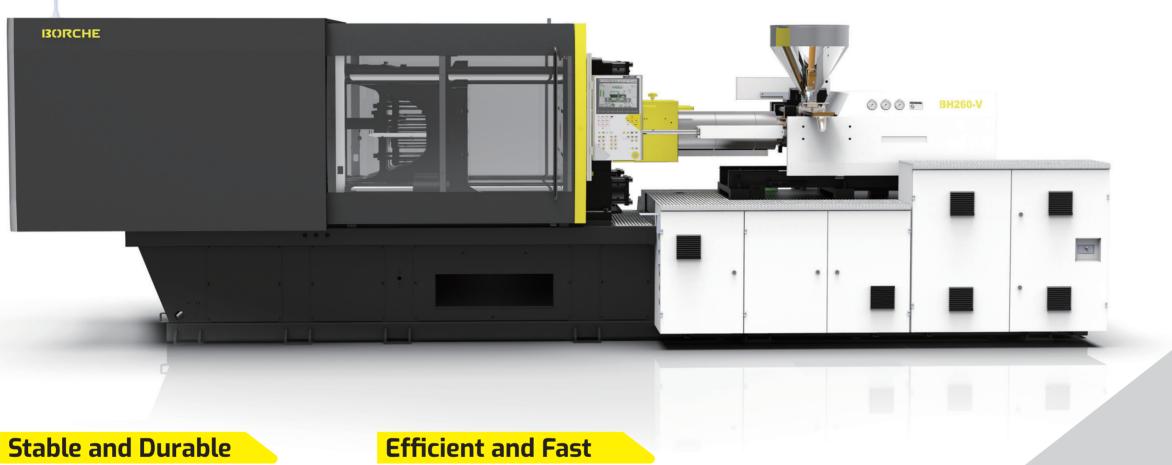
All information in the brochures is general one , which is not contractual contents. Borche reserves the right of any change without prior notice.

CENTROTÉCNICA

CT SERVICIO SA | CENTROTECNICA

C/ de la Llobatona 38 08840 Viladecans | Barcelona T. +34 936 376 info@centrotecnica.es | www.centrotecnica.es

Aug 2021



New Generation of Borche High speed machine

Stable and Durable. Efficient and Fast

BH-V

Specially designed tiebar to be applicable for high speed clamping with long tiebar service life

Patented clamping system design with enhanced structure, higher rigidity, less deformation, longer service life

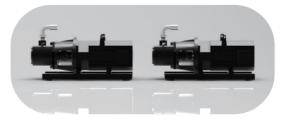
New design of strong frame, stable during high speed clamping

Quantitative controlled grease lubrication, stable and reliable

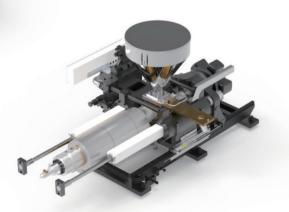
With fast response servo drive/servo motor and fast response algorithm in hydraulic control, less response time in injection speed.

BORCHE

Efficient and Fast



High plasticizing special screw/barrel set With temperature monitor on feed throat and transmission shaft as standard feature

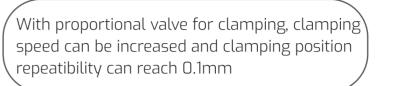

Optimized frame structure, rigidity increased, stability improved

With fast response servo drive/servo motor and fast response algorithm in hydraulic control, less response time in injection speed.

BORCHE

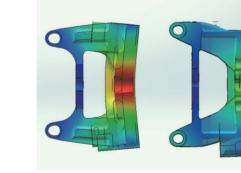
With twin carriage cylinder, balanced force on nozzle, no leakage from nozzle

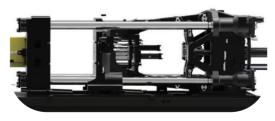
Linear guide on injection unit, less friction, shorter response time, better back pressure precision


Stable and Durable

BORCHE

Efficient and Fast


T slot and thread hole platen, easier to change mold



No contact between tie-bar and moving platen, cleaner platen surface and less pollution

Close-loop quantitative controlled grease lubrication, less consumption of grease, less pollution and more reliable

New clamping structure from new platform, enhanced toggle design and central clamping design on moving platen and fixed platen, platen deformation can be reduced by 25% or more and flashing or short shot can be avoided, so that less clamping force can be required and mold service life can be increased

Optimized toggle design, faster and smoother, less dry cycle

Increased tiebar distance, compatible with bigger mold

Linear guide under moving platen,

better platen parallel, better platen

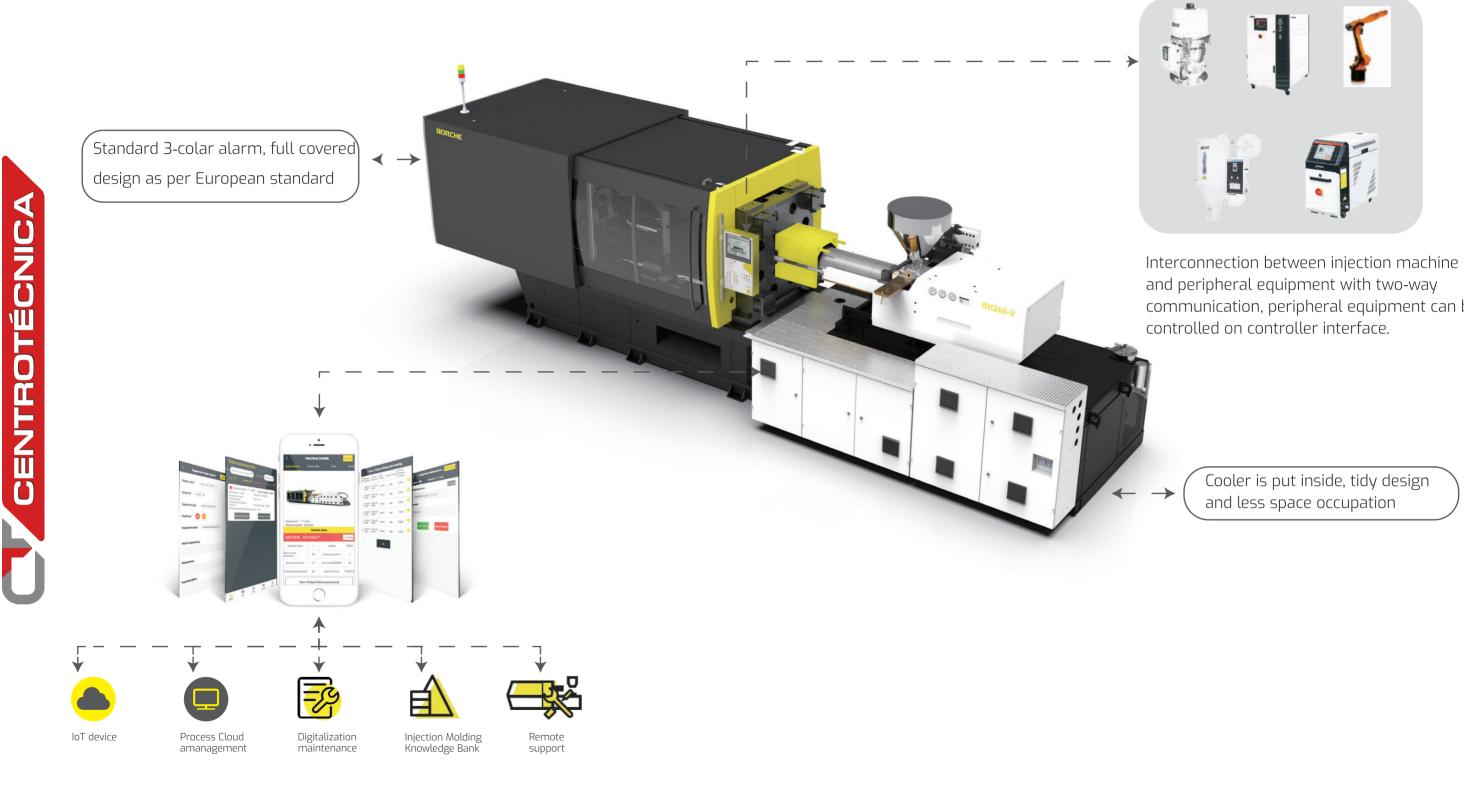
friction and more energy-saving.

position precision, smoother move, less

BORCHE

With ejector/plasticizing on fly, production efficiency can be increased

Specially designed tiebar to be applicable for high speed clamping with long tiebar service life



Twin ejector cylinder, balanced ejecting force

Same structure for central and side ejector, suitable for exchange

BORCHE

Efficient and Fast

BORCHE

communication, peripheral equipment can be

Cooler is put inside, tidy design

BH-V Parameter Table

Model	
al class no.	unit
JIECTION UNIT	
ew diameter	mm
hot volume	cm³
hot weight (PS)	g
ection pressure	Мра
neoretical Shot Rate	cm³ /s
heoretical Shot Rate (PS)	g/s
lasticizing Rate with single	g/s
oump (PS) crew RPM with single pump	rpm
lasticizing Rate with twin	g/s
oump (PS)	
crew RPM with twin pump	rpm
njection Speed	mm/s
crew stroke	mm
ozzle contact force	kN
ozzle stroke	mm
LAMPING UNIT	
amping force	kN
bening stroke	mm
ax.day light	mm
oace between tie bars	mm x mm
laten size	mm x mm
old thickness(min-max)	mm
lydraulic ejection stroke	mm
lydraulic ejection force	kN
ector pin	unit
DWER UNIT	
Hydraulic system pressure	Мра
ump motor	Kw
leating capacity	Kw
umber of temp. control	unit
zones GENERAL UNIT	
Machine Dimensions(LxWxH)	m x m xm
Theoretical oil tank capacity	L
Theoretical of tank capacity	L

The specification above is only for reference. No further notice of any change in specification resulting from technical upgrading.

BORCHE

BH400-V	BH500-V
2164	2164
70	70
1346	1346
1225	1225
161	161
866	866
788	788
58	58
165	165
89	89
280	280
240	240
350	350
120	120
500	500
4000	5000
730	850
1460	1700
830x830	930x930
1190x1190	1340x1340
250-730	320-850
180	180
83	111
4+8+4+1	8+8+4+1
17.5	17.5
60+37	60+37
22	22
6	6
8.52 x 2.17 x 2.26	9.18 x 2.26 x 2.30
1050	1050

BH160-V

DESCRIPTION

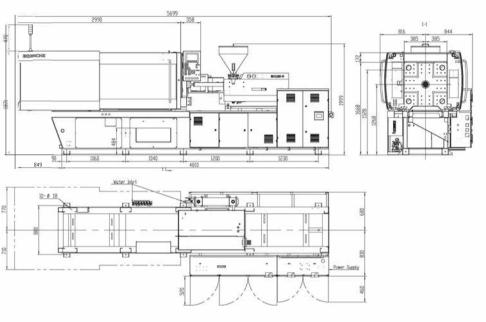
INTERNATIONAL CLASS NO.	UNIT	408	2
INJIECTION UNIT			
Screw diameter	mm	40	
Shot volume	cm ³	270	100
Shot weight (PS)	g	254	
Injection pressure	MPa	235	
Theoretical Shot Rate	cm³/s	198	1831
Theoretical Shot Rate (PS)	g/s	181	
Plasticizing Rate with single pump(PS)	g/s	24	
screw RPM with single pump	rpm	265	
Plasticizing Rate with twin pump(PS)	g/s		
screw RPM with twin pump	rpm		770
Injection Speed	mm / s	158	
Screw stroke	mm	215	710
Nozzle contact force	kN	30	1
Nozzle stroke	mm	375	
CLAMPING UNIT			
Clamping force	kN	1600	
Opening stroke	mm	430	
Max.day light	mm	950	
Space between tie bars	mmxmm	520x520	
Platen size	mmxmm	770x770	
Mold thickness(min-max)	mm	180-520	
Hydraulic ejection stroke	mm	120	
Hydraulic ejection force	kN	44	
Ejector pin	unit	4+1	
POWER UNIT			
Hydraulic system pressure	Мра	17.5	
Pump motor	kw	30	
Heating capacity	kw	9.6	

unit

- È

Machine Dimensions(LxWxH) mxmxm 5.7x1.66x1.87

5


350

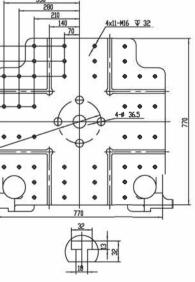
Number of temp. control zones

Theoretical oil tank capacity

GENERAL UNIT

Appearance and Installation Dimensions

Mold Platen Drawing



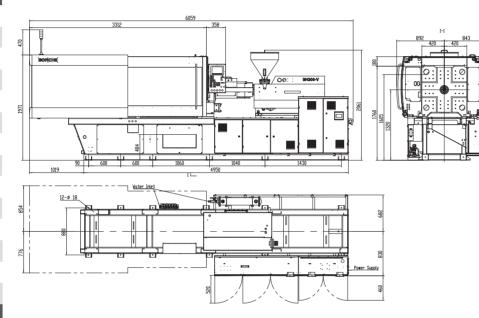
CENTROTÉCNICA

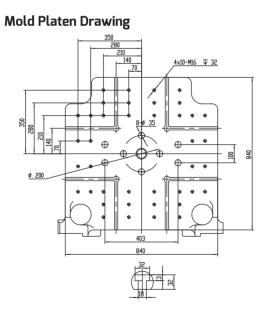
L

ſ

BORCHE

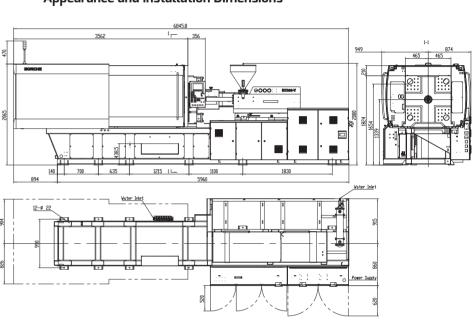
BH200-V


BORCHE


BH260-V

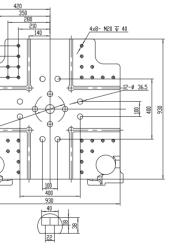
DESCRIPTION

INTERNATIONAL CLASS NO.	UNIT	603
INJIECTION UNIT		
Screw diameter	mm	45
Shot volume	cm ³	389
Shot weight (PS)	g	365
Injection pressure	MPa	218
Theoretical Shot Rate	cm³/s	267
Theoretical Shot Rate (PS)	g/5	243
Plasticizing Rate with single pump(PS)	- g/s	26
screw RPM with single pump	rpm	205
Plasticizing Rate with twin pump(PS)	g/s	
screw RPM with twin pump	rpm	
Injection Speed	mm/s	168
Screw stroke	mm	245
Nozzle contact force	kN	30
Nozzle stroke	mm	375
CLAMPING UNIT		
Clamping force	kΝ	2000
Opening stroke	mm	510
Max.day light	mm	1060
Space between tie bars	הורחארחרח	570x570
Platen size	mmxmm	840x840
Mold thickness(min-max)	mm	200-550
Hydraulic ejection stroke	mm	150
Hydraulic ejection force	kN	44
Ejector pin	unit	4+1
POWER UNIT		
Hydraulic system pressure	Mpa	17.5
Pump motor	kw	37
Heating capacity	kw	10.4
Number of temp. control zones	unit	5
GENERAL UNIT		
Machine Dimensions(LxWxH)	mxmxm	6.06x1.75x1.97
Theoretical oil tank capacity	l	420


Appearance and Installation Dimensions

DESCRIPTION

INTERNATIONAL CLASS NO.	UNIT	809
INJIECTION UNIT		
Screw diameter	mm	50
Shot volume	cm ³	481
Shot weight (PS)	g	438
Injection pressure	MPa	168
Theoretical Shot Rate	cm ³ /5	530
Theoretical Shot Rate (PS)	g/s	482
Plasticizing Rate with single	g/s	28
pump(PS) screw RPM with single pump	rpm	200
Plasticizing Rate with twin	g/s	41
pump(PS) screw RPM with twin pump	rpm	300
Injection Speed	mm/s	270
Screw stroke	mm	245
Nozzle contact force	kN	55
Nozzle stroke	mm	430
CLAMPING UNIT		
Clamping force	kN	2600
Opening stroke	mm	570
Max.day light	mm	1180
Space between tie bars	mmxmm	630x630
Platen size	mmxmm	930x930
Mold thickness(min-max)	mm	220-610
Hydraulic ejection stroke	mm	180
Hydraulic ejection force	kN	83
Ejector pin	unit	8+4+1
POWER UNIT		
Hydraulic system pressure	Мра	17.5
Pump motor	kw	30+30
Heating capacity	kw	11
Number of temp. control zones	unit	5
GENERAL UNIT		
Machine Dimensions(LxWxH)	mxmxm	6.85x1.82x2.07
Theoretical oil tank capacity	l	680



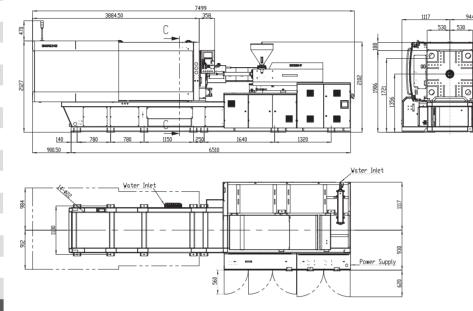
							-	_
		_						
		Ι.	_		-	+	_	Ł
ສ				_	+	-	_	Ļ
4	350	8		١.		_	_	-
			210	140				
1					+			
								_
		ø	20	0	丯	~	<	
						θ	<	€
					+	~	_	~
				F	ł	(
					Й	1	_	2

BORCHE

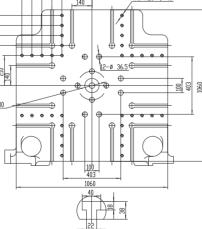
Appearance and Installation Dimensions

Mold Platen Drawing

BH320-V


BORCHE

BH400-V


DESCRIPTION

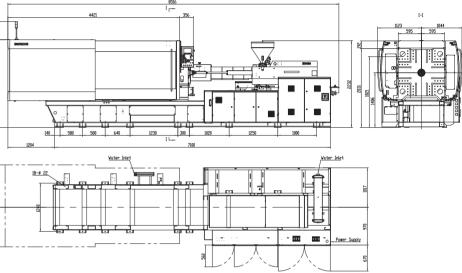
INTERNATIONAL CLASS NO.	UNIT	1319
INJIECTION UNIT		
Screw diameter	mm	60
Shot volume	cm ³	848
Shot weight (PS)	g	771
Injection pressure	MPa	156
Theoretical Shot Rate	cm³/s	709
Theoretical Shot Rate (PS)	g/s	645
Plasticizing Rate with single pump(PS)	g/S	46
screw RPM with single pump	rpm	200
Plasticizing Rate with twin pump(PS)	g/5	64
screw RPM with twin pump	rpm	280
Injection Speed	mm/s	260
Screw stroke	mm	300
Nozzle contact force	kN	55
Nozzle stroke	mm	500
CLAMPING UNIT		
Clamping force	kN	3200
Opening stroke	mm	650
Max.day light	mm	1320
Space between tie bars	mmxmm	730x730
Platen size	mmxmm	1080×1080
Mold thickness(min-max)	mm	240-670
Hydraulic ejection stroke	mm	180
Hydraulic ejection force	kΝ	83
Ejector pin	unit	8+4+1
POWER UNIT		
Hydraulic system pressure	Mpa	17.5
Pump motor	kw	37+37
Heating capacity	kw	18.6
Number of temp. control zones	unit	5
GENERAL UNIT		
Machine Dimensions(LxWxH)	mxmxm	7.50x2.06x2.13
Theoretical oil tank capacity	l	850

Appearance and Installation Dimensions

Mold Platen Drawing <u>4x9-M20 ∓ 40</u> 2-ø 36.5 € Ф ø 200 œ

DESCRIPTION

INTERNATIONAL CLASS NO.	UNIT	2164
INJIECTION UNIT		
Screw diameter	mm	70
Shot volume	cm ³	1346
Shot weight (PS)	g	1225
Injection pressure	MPa	161
Theoretical Shot Rate	cm³/s	866
Theoretical Shot Rate (PS)	g/s	788
Plasticizing Rate with single pump(PS)	g/s	58
screw RPM with single pump	rpm	165
Plasticizing Rate with twin pump(PS)	g/5	89
screw RPM with twin pump	rpm	280
Injection Speed	mm/s	240
Screw stroke	mm	350
Nozzle contact force	kN	120
Nozzle stroke	mm	500
CLAMPING UNIT		
Clamping force	kN	4000
Opening stroke	mm	730
Max.day light	mm	1460
Space between tie bars	กาการกากา	830x830
Platen size	mmxmm	1190x1190
Mold thickness(min-max)	mm	250-730
Hydraulic ejection stroke	mm	180
Hydraulic ejection force	kN	83
Ejector pin	unit	4+8+4+1
POWER UNIT		
Hydraulic system pressure	Mpa	17.5
Pump motor	kw	60+37
Heating capacity	kw	22


Number of temp. control

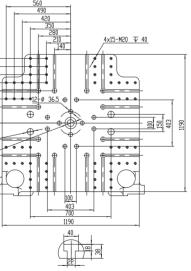
Theoretical oil tank capacity

Machine Dimensions(LxWxH) mxmxm 8.52x2.17x2.26

GENERAL UNIT

_	-		
	l 🛢		
_	h &		
	BORCHE		
	1		
	- 4	-	1 F
	1	ol.	
))		
		1 1 1	
	140	580	580
		1	
	1204		
-			
	18-# 22	-	
		< h:	
4			
1			

7						
		1		_		_
560	490	420	350	000	-	
				ະສ	210	140
		4	1-ø	5	6	_


6

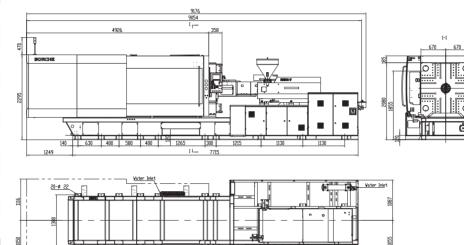
1050

BORCHE

Appearance and Installation Dimensions

Mold Platen Drawing

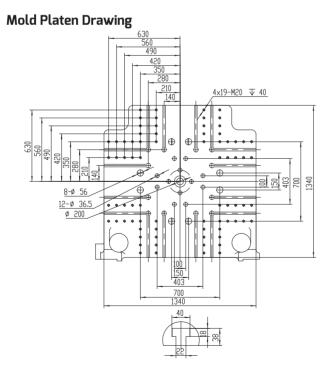
BH500-V


BORCHE

Platen Dimension

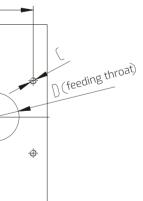
DESCRIPTION

INTERNATIONAL CLASS NO.	UNIT	2164
INJIECTION UNIT		
Screw diameter	mm	70
Shot volume	cm ³	1346
Shot weight (PS)	g	1225
Injection pressure	MPa	161
Theoretical Shot Rate	cm³/s	866
Theoretical Shot Rate (PS)	g/s	788
Plasticizing Rate with single pump(PS)	g/s	58
screw RPM with single pump	rpm	165
Plasticizing Rate with twin pump(PS)	g/s	89
screw RPM with twin pump	rpm	280
Injection Speed	mm/s	240
Screw stroke	mm	350
Nozzle contact force	kN	120
Nozzle stroke	mm	500
CLAMPING UNIT		
Clamping force	kN	5000
Opening stroke	mm	850
Max.day light	mm	1700
Space between tie bars	mmxmm	930x930
Platen size	mmxmm	1340x1340
Mold thickness(min-max)	mm	320-850
Hydraulic ejection stroke	mm	180
Hydraulic ejection force	kN	111
Ejector pin	unit	8+8+4+1
POWER UNIT		
Hydraulic system pressure	Mpa	17.5
Pump motor	kw	60+37
Heating capacity	kw	22
Number of temp. control zones	unit	6
GENERAL UNIT		
Machine Dimensions(LxWxH)	mxmxm	9.18x2.26x2.30
Theoretical oil tank capacity	l	1050


Appearance and Installation Dimensions

Robot Mounting Interface

BH-V	BH130-V	BH160-V	BH200-V	BH260V	BH320-V	BH400-V	BH500-V
A1	35	35	35	35	35	35	35
A2	105	105	175	175	175	175	175
B1	175	175	210	280	350	350	420
B2	280	280	350	420	490	490	560
C (Dia of locating ring)	100	100	125	125	160	160	160
D	M16	M16	M20	M20	M20	M20	M20
A3 (The distance of nozzle extension from fixed platen)	35	45	45	45	45	45	50
E (Dia of nozzle hole)	З	З	З	4	4	4	4
F (Radius of nozzle tip)	10	10	10	10	10	10	10



 \square

Hopper Dryer Installation Dimension

BH-V	BH130-V	BH160-V	BH200-V	BH260V	BH320-V	BH400-V	BH500-V
A/mm	80	90	90	90	110	110	110
B/mm	80	95	95	95	110	110	110
C/mm	M8	M8	M8	M8	M10	M10	M10
D/mm	50	50	6	60	70	80	80

BORCHE

Standard Features

BORCHE

Option Features

SAFETY UNIT

10 Stainless hoper

SAFE	TY UNIT
1	Hydraulic safety lock, china new standard $lacksquare$
2	Fully covered design
3	Double emergency button
INJE	CTION UNIT
1	Twin carriage structure
2	Wear-resistant barrel
3	Chrome-plated screw
4	Nozzle centering calibration
5	Nozzle safety guard with electric lock
6	Linear guide for nozzle moverment
7	Leakage protection when screw suckback
8	Screw rotation speed setting and display
9	Screw cold start prevention
10	6 stage of injection pressure/speed adjustable
11	5 s tages of pres sure hol ding, pres sure/speed odjustable
12	5 stages of plasticizing, pressure/speed adjustable
13	5 stages of back pressure •
14	Temperature monitor of hopper feed throat
15	Temerature monitor of shaft
16	Holding pressure time setting
17	High pressure/temperature tube for cooling ring of hopper throat
18	Non-slip embossed aluminum cover
19	4 ways of nozzle backward •
20	V/P switchover mode (position,pressure,speed.time)

HYDRAULIC UNIT		
1	Servo motor power	•
2	Pump with auto decompression function	•
3	One-way direction valve for carriage	•
4	Temperature monitor for servo motor	•
5	Hydraulic oil level indicator and low level alarm	•
6	High effiency hydraulic oil cooler	•
7	Oil temperature alarm	•
8	Proportional valve for clamping	•
9	Digital back pressure	•
10	Boost clamping	•

CLAN	IPING UNIT
1	Balanced,double, five point toggle locking system •
2	Mold platen with T-slot and thread holes
3	Independent location ring for fixing platen
4	Chrome-plated, high rigidity tie-bar
5	Robot mounting holes •
6	5 stages of mold closing, pressure/speed adjustable $ullet$
7	5 stages of mold opening, pressure/speed adjustable $ullet$
8	5 s tages of ej ector contro l, pres sure/speed adjustable
9	Centralized lubrication system with end sensor
10	Top cover on clamping area (≤260T) ●
11	Linear guide for moving platen
12	Adjustable ejector backward confirmation switch •
13	With oil collecting plate under moving platen
14	Clamping force setting •
15	Integrated oil sunk, with reserved oil drain at the end of machine frame
16	Hydraulic motor drives gear to adjust mold $ullet$
17	Controller height adjustable
18	Product drop chute(\leq 260T) \bullet
19	Parrel plasticizing during mold opening
20	Low pressure mold safety protection

CON		
1	Keba controller: made in Austria	٠
2	Internet connection port	٠
3	Multilanguage available	٠
4	Self-diagnosis system	٠
5	SPC quality control	٠
6	Process parameter quick setting	٠
7	Robot interface	٠
8	Auto purge function	٠
9	Timer heating function	٠
10	Electric heating protection by fuse or auto switch	٠
11	PID temperature control of barrel heating	٠
12	Data protect lock	٠
13	Solid state relay for temperature control	٠
14	Three color alram light (Red/Yellow/Green)	٠

OTHRE UNIT		
1	Borche standard VI color	٠
2	Power outlet	٠
3	Adjustable level pads	٠
4	Hopper as optioanal spare	٠
5	Hopper slider	٠
6	Tool box	٠
7	Standard spare parts	٠

1	CE safety standard •
2	Main power withrotation handle
INJE	
1	Bi-metal screw and barrel •
2	PC screw •
3	Extended nozzle
4	Shut-off nozzle (Hydraulic/penumatic)
5	Spring type shut off nozzle
6	Ceramic heater band •
7	Temperature control ofhooper feed throat
8	Carriage transducer •
9	V/P switch over of mold pressure

CLAMPING UNIT 1 Extra hydraulic core puller 2 Extra penumatic core puller 3 Hydraulic unscrewing 4 Electric unscrewing 5 Multiple sets of air blast 6 Enlarged mold thickness 7 Quick change of central ejector pin Mold locking ring with tailored size 8 9 Photo sensor for product drop detector (\leq 320T) 10 Extra water manifold 11 Extra water distributor 12 Mold platen heat insulation board 13 Manual centralized lubrication for rear platen

٠

BORCHE

HYDRAULIC UNIT			
1	Independent oil temperature control		
2	Oil cooler with inlet filter $lacksquare$		
3	Highly precise by-pass oil filter $lacebox{}$		
4	Pilot check valve for mold adjustment		
5	Pilot check valve for core pulling		
6	Decompression function for core pulling		
7	Quick coupling for core pulling		

CONTROL UNIT		
1	Hot runner control by program.comply with EU14 •	
2	Robot interface, comply with EU12/EU67 •	
3	Core pulling electric interface, comply with EU13	
4	Quick mold change electric interface, comply with EU70	
5	Gas-assist injection electric interface	
6	Mold cavity pressure detect electric interface	
7	Energy meter	
8	Phase loss or phase failure protection for motor	
9	Specified power and voltage	
10	External voltage transformer $lacksquare$	
11	Heater band leakage detection $lacksquare$	
12	Four color alarm light $ullet$	
13	Extra sockets $lacksquare$	
14	Power stablizer $lacksquare$	
15	Mold backward protection signal interface	
16	UPS •	

Industry 4.0 for IMM

BORCHE

Intelligent Unmanned IMM Factory

Optional Functions Of Intelligent Manufacturing:

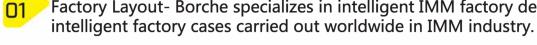
- With Industry 4.0 on IMM, three mold change ways can be realized with mold change platform: one-stop automatic mold change, semi-automatic mold change and manual mold change. IMM can automatically identify mold and acquire parameter of mold change, technique and peripherals. The hole of IMM should be tailored to suit that of the mold change platform and hydraulic clamp. IMM will evaluate the safety of above holes. Safety lock is active when matching signal received. IMM plays a responsible role in mold change platform and hydraulic clamp.
- IMM controller can display all machines' (peripherals included) operation condition and malfunction alarm. There are eight malfunction alarm interfaces for following peripherals: one robot, two mould temperature controllers, one water cooler, one dryer and all-in-one compact dryer. The communication and alarm function of other peripherals are connected to IMM through external connection cabinet so that intelligent interconnection of IMM and peripherals is built
- Plug and play, intelligently inter-connected water cooler operated and controlled in IMM with close-loop connection Intelligent interconnection of IMM and chiller can be operated and controlled by IMM controller. Data is close-loop interconnection.
- Intelligent interconnection of IMM and mould temperature controller can be operated and controlled by IMM controller. All data is close-loop interconnection.
- Intelligent interconnection of IMM and all-in-one compact dryer can be operated and controlled by IMM controller. All data is close-loop interconnection.
- Compression injection molding technique
- Robot connects with IMM in real-time, which reduce the interference of robot, IMM and mold. Robot can be fixed on the top or side of fixed platen according to parts pick requirements
- Automation system of IMM and peripherals interact with MES management system
- 1) Order Monitor
- 2) CProduction Status Display
- Alarm Monitor

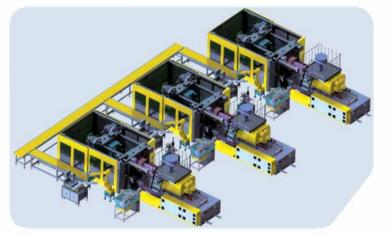
CENTROTÉCNICA

- 4) Technique Parameter Management
- 5) Equipment Management
- 6) Production Report

iPHM, IMM Prognoties and Health Management (Equipment Online Doctor)

- 1) Safe and reliable bidirectional terminal is equipped with built-in firewall and remote VPN connection; various networking is available. Cloud platform connects IMM controller in real-time
- 2) Data of equipment operation, malfunction alarm and worker operation is collected in real time.IMM data visualization on Cloud Platform is realized.
- 3) Self diagnose module of failure and performance based one the dynamic data, can reduce the malfunction rate, and improve the equipment performance.
- 4) Operation and maintenance system connects the on-line management platform of after-sales service. It realizes remote on-line program upgrading, and improves the maintenance efficiency and quality
- 5) IMM condition and performance report can be checked through mobile terminal; After-sales service request can be reported via WeChat.

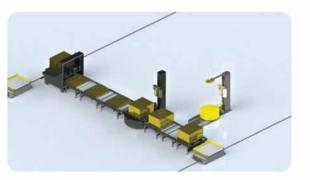

Mold Visual Monitor


- 1) Low pressure mold protection for higher precision and efficiency
- 2) CAccurate checkup
- 3) Self-adaption to exterior light change
- 4) Self-adaption to inaccurate mold open position
- 5) Real-time record

Visual Detective System for surface quality checking

- 1) Fast detection, detection precision reaches to 0.001mm
- 2) Defectives check of contamination, color difference, flake, and short injection.
- 3) Wide application
- Vision-induced System
- 1) Accurate positioning
- 2) Sensitive identification
- 3) Wide application

12


Flexible Automation -360° visual detection, robot operation, automatic 02 assembling, parts insert, polishing and deburring... Visual Detective System

D3

Intelligent Logistics- AGV, rolling line, automatic packing, wrapper.

Factory Layout- Borche specializes in intelligent IMM factory design. Many

Robot Application (part pick-up, casting insert, assembling, stacking, deburring, degating)

